

Radiation Hardened FPGA Technology for Space Applications MAPLD 2008

Leonard Rockett¹, <u>Dinu Patel¹</u>, Steven Danziger¹, J.J. Wang², and Brian Cronquist² Frank Hawley²

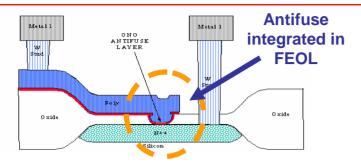
¹BAE Systems, 9300 Wellington Road, Manassas, VA 20110-4122 ²Actel Corporation, 2061 Stierlin Court, Mountain View, CA 94043-4655

October 17, 2008

RHAX250-S effort supported by the Defense Threat Reduction Agency

RHFPGA Programs at BAE SYSTEMS

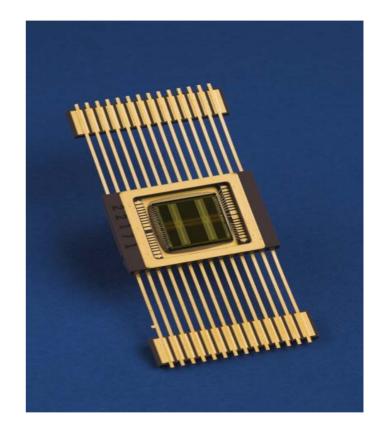
- RH FPGA Product Roadmap
- RH FPGA Technologies
 - ONO (Oxide Nitride Oxide Antifuse)
 - M2M (Metal to Metal Antifuse)
- RH FPGA Program Status Review
 - Reinstall RH1020/RH1280 FPGA
 - RHAX FPGA Demonstration and Qualification Program
- Summary and Outlook



- Rad Hard FPGA Product • Heritage: Actel ONO RH1280 and RH1020 **Re-install** Anti-fuse technology, non-volatile Past in progress 0.8µm RH CMOS, 5V Supply In production since 1996, over 25,000 shipped M2M Anti-fuse Technology: • 250K-gate (RHAX250-S) Entry Vehicle Present • RH15 CMOS, 1.5V Core / 3.3V I/O Flight Orders in 2009 • ≥3M-gate, re-programmable, non-volatile
 - **Future**
- Radiation Hardened, high speed
- RH15 CMOS, 1.5V Core / 3.3V I/O
- Projected qualification starts in 2009

BAE Supporting RHFPGA Needs for RHOC requirements

ONO RHFPGA Program BAE SYSTEMS


- ONO technology : (0.8 micron features)
 - Flight qualified production (with build-out inventory) [1996-2002]
 - Process line re-tooled to support 250 and 150 nm technology nodes on 150mm wafers
- ONO technology now reinstalled in modernized foundry to restart FPGA & PROM product to supply continued demand [2007-]

 \succ Used same design data \Rightarrow same form, fit, and function as product built previously

Keeping same 0.8 micron features

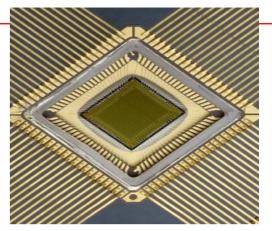
PROM Features

- Features and Capabilities
 - Low voltage version: 32K x 8, 3.3V
 - SMD #5962G02502
 - High voltage version: 32K x 8, 5V
 - SMD #5962R96891
 - Latch-up immune
 - Total dose: 200 Krad(Si)
- Schedule and Status
 - In Production
 - Delivery in 8 weeks

ONO Rad Hard FPGA Technology Features

Features

- Guaranteed Total Dose Radiation Capability
- Low Single Event Upset Susceptibility
- High Dose Rate Survivability
- Latch-Up Immunity Guaranteed
- QML Qualified Devices
- Commercial Devices Available for Prototyping and Pre-Production Requirements
- Gate Capacities of 2,000 and 8,000 Gate Array Gates
- More Design Flexibility than Custom ASICs


- Significantly Greater Densities than Discrete Logic Devices
- Replaces up to 200 TTL Packages
- Design Library with over 500 Macro Functions
- Single-Module Sequential Functions
- Wide-Input Combinatorial Functions
- Up to Two High-Speed, Low-Skew Clock Networks
- Two In-Circuit Diagnostic Probe Pins Support Speed Analysis to 50 MHz
- Non-Volatile, User Programmable Devices
- Fabricated in 0.8 µ Epitaxial Bulk CMOS Process
- Unique In-System Diagnostic and Verification Capability with Silicon Explorer

	Product	Family	Profile
--	---------	--------	---------

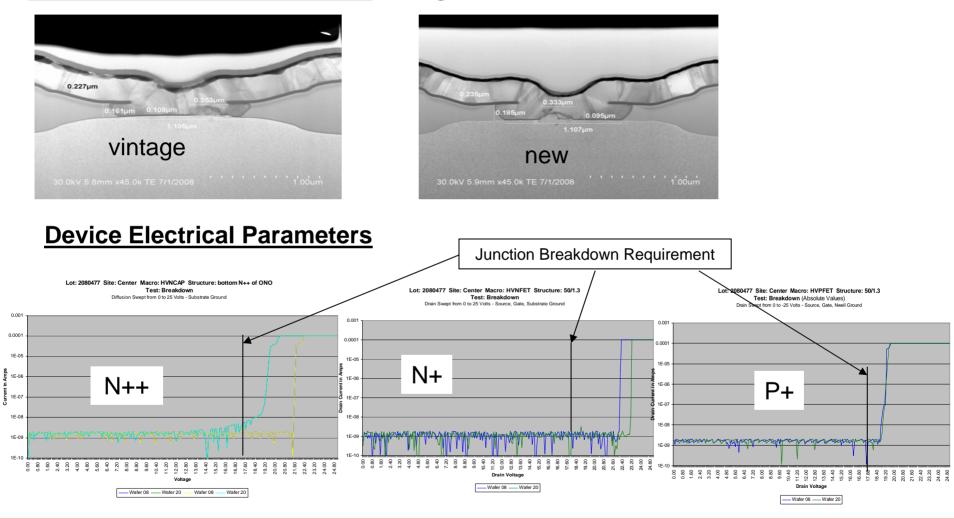
Device	RH1020	RH1280
Capacity System Gates Gate Array Equivalent Gates PLD Equivalent Gates TTL Equivalent Packages 20-Pin PAL Equivalent Packages	3,000 2,000 6,000 50 20	12,000 8,000 20,000 200 80
Logic Modules S-Modules C-Modules	547 0 547	1,232 624 608
Flip-Flops (Maximum)	273	998
Routing Resources Horizontal Tracks/Channel Vertical Tracks/Channel PLICE Antifuse Elements	22 13 186,000	35 15 750,000
User I/Os (Maximum)	69	140
Packages (by Pin Count) Ceramic Quad Flat Pack (CQFP)	84	172

ONO Rad Hard FPGA Radiation Features BAE SYSTEMS

Radiation Specifications

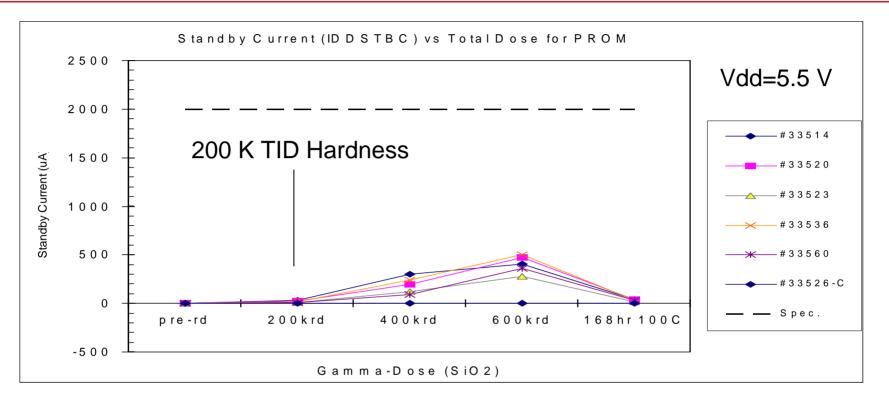
Table 1-2 • Radiation Specifications^{1, 2}

Symbol	Characteristics	Conditions	Min.	Max.	Units
RTD	Total Dose			300 k	Rad (Si)
SEL	Single Event Latch-Up	–55°C ≤ T_{case} ≤ 125°C		0	Fails/Device-Day
SEU1 ³	Single Event Upset for S-modules	–55°C ≤ T_{case} ≤ 125°C		1E-6	Upsets/Bit-Day
SEU2 ³	Single Event Upset for C-modules	–55°C ≤ T_{case} ≤ 125°C		1E-7	Upsets/Bit-Day
SEU3 ³	Single Event Fuse Rupture	–55°C ≤ T_{case} ≤ 125°C		<1	FIT (Fails/Device/1E9 Hrs)
RNF	Neutron Fluence		>1 E+12		N/cm ²


Notes:

- 1. Measured at room temperature unless otherwise stated.
- 2. Device electrical characteristics are guaranteed for post-irradiation levels at worst-case conditions.
- 10% worst-case particle environment, geosynchronous orbit, 0.025' of aluminum shielding. Specification set using the CREME code upset rate calculation method with a 2 μ epi thickness.

RH ONO Technology Process Data


BAE SYSTEMS

ONO Anti-fuse Cross sections - Programmed

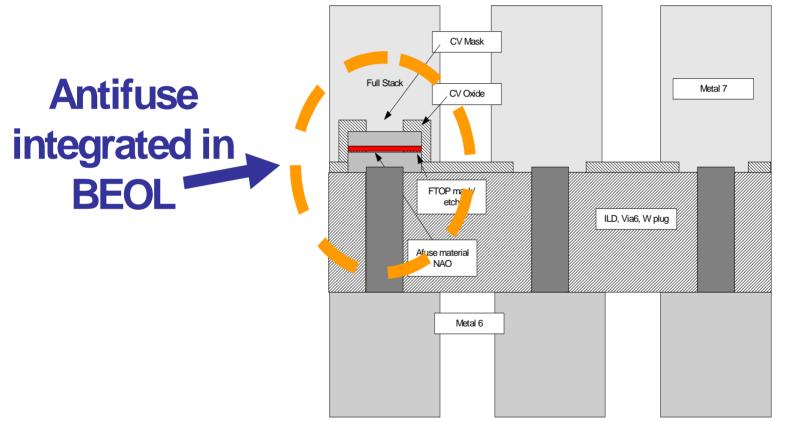
RH ONO Re-installed Technology Meets Device Parameters Requirements

RH ONO Technology TID Data - PROM BAE SYSTEMS

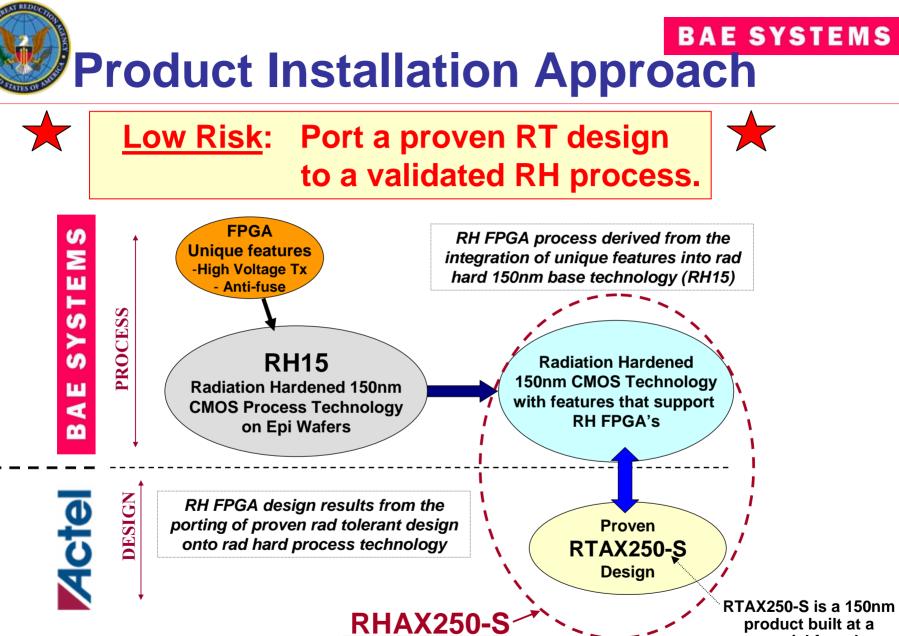
 Active current, VIL, VIH, Access time and chip enable time all remain stable through 600 Krd

RH PROM Exceeds 200 Krad TID Requirements

ONO RHFPGA Program Status

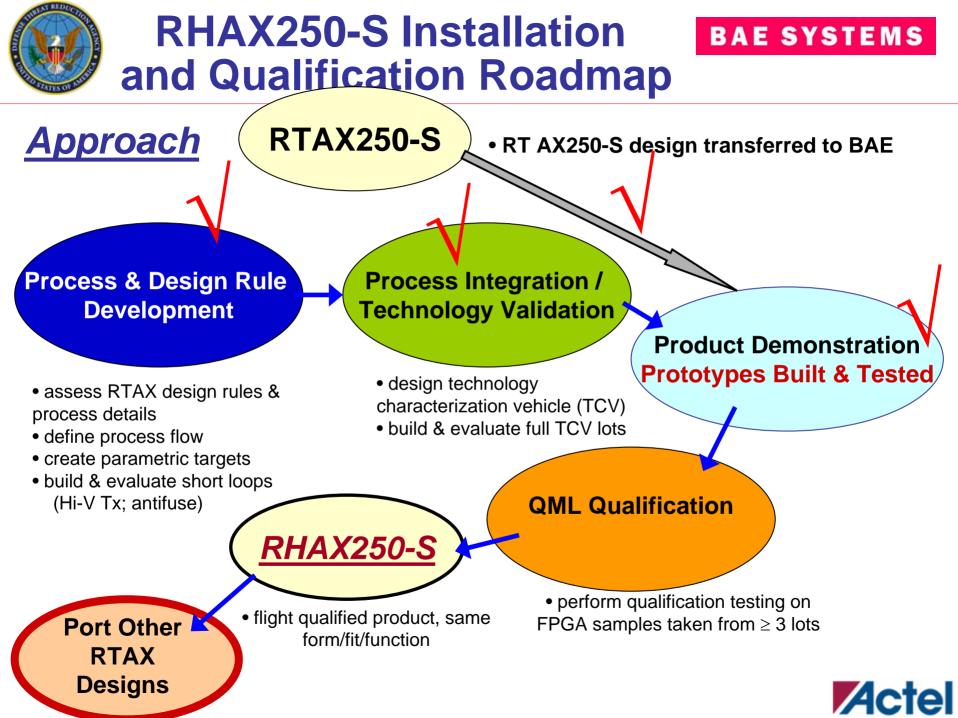

- Successfully reinstalled ONO process technology
- Flight-qualified PROM production restarted
- RH1280B prototype hardware successfully delivered, flight hardware in qualification.
 - BAE acquired license from Actel to produce, market and sell RH1280 FPGA's

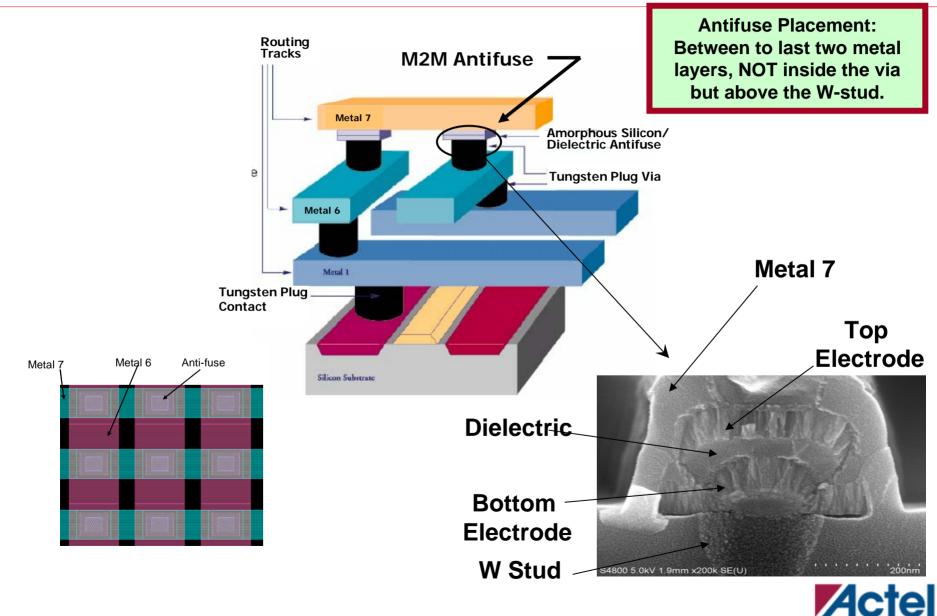
BAE SYSTEMS


- SEGR completed successfully, TID testing in progress
- RH1020 FPGA build underway for prototype and flight Qualification

ONO FPGA Flight Hardware in Production Orders being taken for shipments in 2008

Metal to Metal Antifuse Based FPGA's





product built at a commercial foundry on non-epi substrates.

Actel

Metal-to-Metal Antifuse

RHAX250-S Product Profile

Device	RHAX250-S]
Capacity		Performance
Equivalent System Gates	250,000	1.5V Core; 3.3V I/0
ASIC Gates	30,000	High-Performance Embedded FIFOs
Modules		350+ MHz System Performance
Register (R-Cells)	1,408	500+ MHz Internal Performance
Combinatorial (C-Cells)	2,816	700 Mb/s LVDS Capable I/Os
Flip-Flops (Maximum)	2,816	, co + ib/s E i bo capable 1/cs
Embedded RAM/FIFO (without EDAC)		
Core RAM Blocks	12	
Core RAM Bits (K = $1,024$)	54 K	
Clocks Segmentable		Dediction Headness Tennets
Hardwired	4	Radiation Hardness Targets
Routed	4	TID ≥ 1Mrad(Si)
I/O's		DR Upset > 1E9 rad(Si)/sec
I/O Banks	8	SEL Immune
User I/O's (Maximum)	248	SEU _{REGS} < 1E-10 errors/bit-day (TMR-hardened)
I/O Registers	744	SEU _{e-RAM} < 1E-10 errors/bit-day (EDAC)
Package		
CCGA/LGA	-	
CQFP	208, 352	

<u>RHAX FPGA will have the identical form, fit, and function of its RTAX</u> counterpart.

Predicted SEU Rates vs. logic level & freq.

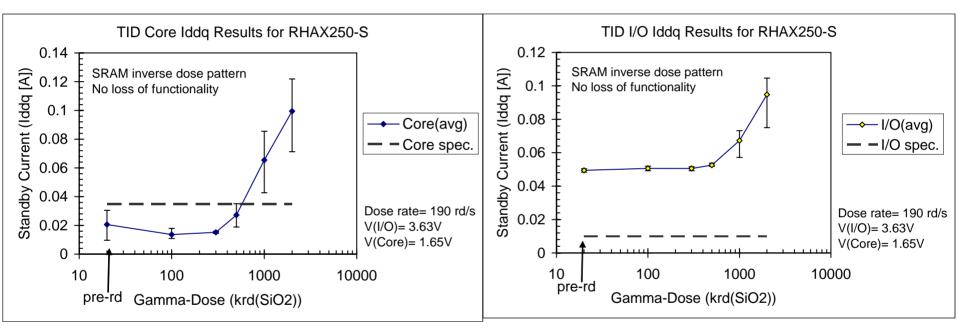
			Test data ta	ken on RT	AX Produ	ct			
			Predi	icted SEU R	ates (erro	rs/bit/day)	*		
				Signal Fre	equency				
			Levels of Intervening Logic	15 MHz	37.5 MHz	75 MHz	150 MHz	-	rsening
			8-Levels	5.31E-09	7.88E-09	3.75E-08	8-17E-08	SE	U Rate
(D. 1. 1.11)			4-Levels	2.01E-09	8.71E-09	1.89E-08	6.29E-08		
(Probability of Generating an SI			0-Levels	6.08E=10	5.14E-09	2.84E-08	5.84E-08		
			* assumed radiat	tion environmer	t: GEO-min a	nd 100-mil Al	shielding		
	Lo	gic							
			Frequency —						
				ability of ng an SET)					

Impact of SET on error rate depends on circuit design and signal frequency.

Further SEU Enhancements projected in Rad Hard Process using Epi layer

Prototype RHAX250-S FPGA's have yielded functional hardware,

Modules were programmed for total ionizing dose testing.


Circuit elements tested per module:

- 12 blocks of 4Kx1 SRAM (total: 48K)
- 1408-stage DFF register string
- Two 1408-stage logic chains

RHAX250-S modules remained fully functional throughout testing to 2Mrd(Si0₂)

TID test results on prototype FPGA's demonstrate improved hardness. Hardening process adjustments are being implemented to further enhance hardness.

- Parts successfully programmed at Actel, with latest QCMON
 - Used <u>NASA-Industry Tiger Team</u> Algorithm
 - Parts pass all 346 tests at 125 Degrees C except Icca, standby current exceeded specification limit
 - Further leakage reduction required for flight parts

Lot 421 QCMON (346 Total Tests)									
PARTS	Contact Test	QCMON Funct	QCMON Hi Z	Input Current High	Input Current Low	Input Pull Ups	Input Pull Dns	Pwr Supply Stdby Currents	Icca Stdby Current
Mod # 1	Р	Р	Р	Р	Р	Р	Р	Р	20.3mA*
Mod # 2	Р	Р	Р	Р	Р	Р	Р	Р	31.5mA*
P=PASS		* Note: S	pec limit i						

- Build more hardware incorporating identified process enhancements for further leakage reduction
- Subject functional hardware to full battery of reliability and radiation testing
- QML qualify the RHAX process technology
- Begin full RHAX250-S wafer production to supply Actel
- Port additional Actel RTAX FPGA designs onto rad hard process technology at BAE to extend rad hard offerings.

- BAE and Actel are continuing their >12 year collaboration as rad hard FPGA suppliers.
- Next generation rad hard product is being built and tested.
- Total dose test results on RHAX250-S hardware demonstrates improved hardness over RTAX250-S.
- Single-event effects test results on AX250 demonstrates product design's high tolerance.
- Electrical, radiation, and reliability testing is on-going.
- Full flight-qualified production in progress for ONO technology and projected to start M2M technologies in early 2009

The authors gratefully acknowledge the support for this effort provided by the Defense Threat Reduction Agency under contract DTRA01-03-D-0007 / 0004.

